Computing greatest common divisors and factorizations in quadratic number fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Greatest Common Divisors and Factorizations in Quadratic Number Fields*

In a quadratic number field Q(√ D ), D a squarefree integer, with class number 1 any algebraic integer can be decomposed uniquely into primes but for only 21 domains Euclidean algorithms are known. It was shown by Cohn [5] that for D ≤ – 19 even remainder sequences with possibly non-decreasing norms cannot determine the GCD of arbitrary inputs. We extend this result by showing that there does...

متن کامل

Computing Greatest Common Divisors and Factorizations

In a quadratic number field Q(V~D), D a squarefree integer, with class number 1, any algebraic integer can be decomposed uniquely into primes, but for only 21 domains Euclidean algorithms are known. It was shown by Cohn [5] that for D < —19 even remainder sequences with possibly nondecreasing norms cannot determine the GCD of arbitrary inputs. We extend this result by showing that there does no...

متن کامل

Divisibility and Greatest Common Divisors

Definition 2.1. When a and b are integers, we say a divides b if b = ak for some k ∈ Z. We then write a | b (read as “a divides b”). Example 2.2. We have 2 | 6 (because 6 = 2 · 3), 4 | (−12), and 5 | 0. We have ±1 | b for every b ∈ Z. However, 6 does not divide 2 and 0 does not divide 5. Divisibility is a relation, much like inequalities. In particular, the relation 2 | 6 is not the number 3, e...

متن کامل

Computing Approximate Greatest Common Right Divisors of Differential Polynomials

Differential (Ore) type polynomials with “approximate” polynomial coefficients are introduced. These provide an effective notion of approximate differential operators, with a strong algebraic structure. We introduce the approximate Greatest Common Right Divisor Problem (GCRD) of differential polynomials, as a non-commutative generalization of the well-studied approximate GCD problem. Given two ...

متن کامل

Approximate Greatest Common Divisors and Polynomials Roots

This lecture will show by example some of the problems that occur when the roots of a polynomial are computed using a standard polynomial root solver. In particular, polynomials of high degree with a large number of multiple roots will be considered, and it will be shown that even roundoff error due to floating point arithmetic, in the absence of data errors, is sufficient to cause totally inco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1989

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1989-0982367-2